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Binary collision contribution to the longitudinal current correlation function of dense fluids
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An expression for the binary collision contribution to the first-order space-time memory function of the
longitudinal current correlation function has been obtained by using the cluster expansion technique for a fluid
whose particles are interacting through a continuous potential. This expression involves the radial distribution
function and time dependence of the position, momentum, and acceleration vectors of the particles. The
long-wavelength limit of the expression is obtained for use in studying the longitudinal and bulk viscosities of
fluid. It is found that for the hard-sphere case, our method provides expressions for the longitudinal and bulk
viscosities that agree with Enskog resuf81063-651X97)06601-4

PACS numbg(s): 51.10:+y, 61.20.Ne, 66.26-d, 51.20+d

[. INTRODUCTION particles interacting via a hard-sphere potential. The work is
concluded in Sec. VI.
Considerable progress has been made during past four

decades in extending our knowledge of atomic dynamics at Il. BASIC FORMALISM
wavelengths and frequencies of molecular scale in dense
gases and liquid§l,2]. The density space-time correlation
function provides information about the temporal structure C(9,t) ={j}(a,1)jxx(0,0)), (1)
factor and viscous processes in fluids. The longitudinal vis-
cosity associated with the time correlation function of den-where the dynamical variable is
sity is 3 times the shear viscosity plus the bulk viscosity. In N
the past, the sheqr viscosity of the dgnse 'f|UIdS. has received jxx(q,t):z Vi (1) el @)
much more attention than the bulk viscosity; this may have i=1

been due to complications involved in determining the accu- ith th ton tak | h i Th |
rate value of the bulk viscosity experimentally. Theoreti- V! € wave vectoq taken along th& axis. 1he anguiar

cally, one approach to the space-time correlation functiorprackets in Eq(1) represent the ensemblg averagg(t) .
has been through the evaluation of its memory functio a}ndxi(t) are thex_ componen_t of the vglocny and the posi-
"tion of theith particle at any time. The time dependence of

(MF). Rgc.ently, we ha_ve calculated expressions for the IIemy dynamical variabl&(q,t) is determined by the equation
nary collision contribution to the MF of the self-density cor- of motion

relation function[3] and the transverse current correlation

function[4]. When applied to hard-sphere fluids, our expres- dA(Q,t)
sions provide results for the self-diffusion and the shear vis- at
cosity in agreement with the Enskog resuf6]. In the

present work we derive an expression for the binary collisiowhere L is the Liouville operator and is defined as
contribution to the longitudinal current correlation function

The longitudinal current correlation function is defined as

=iLA(q,1), 3

that is calculable for a continuous potential. The long- L=Lo+ > L£4(j,K)

wavelength limit of this expression may be used to study the 1<k

longitudinal viscosity of the fluid. When applied for a system P g P 9

interacting via a hard-sphere potential, our expressions for =—i> 2L —i> F'k(__ —>; 4)
m 0"r] i<k ) ﬁPJ &Pk

the longitudinal and bulk viscosities are found to be in agree- J

ment with the Enskog value. _ ; _ ;
_ - Fiy=—0U(r;)/ar; is the force and; =|r.—r,|. We define
The layout of the paper is as follows. In Sec. Il the basu:tr{(ka Fourie(r-lj_k;plaé:e transform df(q”t() Ls’, d
formalism and exact relations are given. An expression for '

the binary collision contribution to the MF of the longitudi- ~ (= -

nal current correlation function is obtained in Sec. lll. An C(q,z)=|J’0 dt €*'C(q.1),

expression for the longitudinal viscosity in terms of the long-

wavelength limit of the expression obtained in Sec. Il is 1

given in Sec. IV. Section IV also contains various exact re- :<J'xx(q,0)m jxx(q10)> ()

lation between various viscosities. In Sec. V the expressions
for the longitudinal and bulk viscosities are evaluated forfor Imz>0.
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55
The dynamical structure fact®(q, ) is related toC(q, )
by

2

S(0,0)= 7 C(4,0). ©

The time evolution ofC(q,t) can be determined by using
Mori's equation of motion, which irz space is

vg

C(q,z):—m,

()

whereR(q,z) is the first-order memory function of the lon-
gitudinal current correlation function and is defined as

Qﬁjxx(q,0)> .
(8

In Eq. (8) Q=1—P is a projection operator orthogonal to
P=08j(d,0)){i«x(q.,0)| andv §=kgT/m is the square of
the thermal speed.

- 1 1
K(g,z)= No2 <Q£J xx(qvo)m

2
Uo

The memory functionn{(q,z) can be expressed in terms
of a conventional correlation function whose time evolution
is governed by the original Liouville operator rather than the

projected one&) LQ appearing in Eq(8). By twice applying
the identity

z L
2 i ©
to Eqg. (5) we obtain
2°C(q,2)=v3[ - 2+ $"(q,2)], (10

where

~0 _ 1 . 1
$-(d,2) N EJxx(q,O)ﬁ_Zﬂjxx(q,O) (11

N2
Vo
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1 1

E_Z £0_Z

1 1
Lo+ Li(j,K)—2 Lo—2z

_ S

j<k

4+ ...
(13

In this equation the first term involves free propagation and
the second term contains a sum over a pair of partigldg (
only. The third term involves three particles and so on. This
equation has already been used in deriving the low-density
formula for the phase-space MF and the first-order space-
time MF.

For the dynamical variablg,,(t) we have

djxx

dat 4

iijx: :2 (i)ixeiqxi+iqvi2xeiqxi)a
i

wherev;, = (—1/m)dU(r)/dx; is thex component of the ac-
celeration of particla. Substituting Eq(14) into Eqg. (11,
we obtain

~ 1 1 9U(r)
L _ _ = iy 2
¢<q,z>—702i§<( m ox +|qv.x)
wl 1l 1oum) .
igx; _ - : 2 igX;
xXe E—Z( m ox; +|qle)e J>.

(15

Using the binary collision expansion formu{&3), the lon-
gitudinal current correlation functios"(q,t) can be written
as sum of two terms, i.e.,
$H(a,)=5(a,t) + ¢r(a,t), (16)
where ¢5(q,t) and ¢5(q,t) are the contributions corre-
sponding to the first and second terms of E) in the time
domain. Since Eq.14) is the sum of the kinetic and potential
contributions, Eq(15) can be written as a sum of four terms.
One is a kinetic-kinetic term, two are kinetic-potential
(crossg terms, and the fourth is a potential-potential term.

Evaluation of the first two contributions is simple; therefore,
we illustrate here the evaluation of the potential-potential

is the Fourier-Laplace transform of the time correlation func-term only. This term will be the sum of two terngs§(q,t)

tion ¢-(q,t). From Eqgs.(7) and(10) we get

L
R(q,2)= z¢-(9,2)

=—=. 12
z—¢(a,2) 2

and¢ % (q,t) corresponding to the first two terms in E423),
respectively. Procedures for evaluation ¢f5(q,t) and
¢8(q,t) are quite similar; therefore, we illustrate here only
the terme §(q,t). Writing the total potential as a sum of pair
potentials and using Eq.13) in Eqg. (15), we obtain the

- , npotential-potential contribution
Thus the MF and hence the longitudinal current correlatio

function can be obtained from the knowledge #f(q,t)
only. In the next section we evaluaik(q,t) in the binary
collision approximation.

Ill. BINARY COLLISION CONTRIBUTION

The binary collision contribution t@"(q,t) can be ob-

tained microscopically by using the cluster expansion tech-
nique[6]. This involves the cluster expansion of the resol-

vent operator(£—z) %, which appears in the definition of

~ 1 ] - 1 1
1(q’z)_m205 % G\ Lo—Li(1,K—2  Lo—2

{2

+(N-1)>,

J#F2

ﬂu(rlj) i
——e
0Xq

axy

12 g
9%,

(17

any time correlation function. The binary collision expansionThe sum ovejj in the last term can be simplified by noting

formula is

that all terms except foy=1 are equivalent. Noting
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. where
E au(ryj) aito— AU(r,q) ¥ (N—2) AU(ro3) gl
72 X% 29 29 L= Lo(1)+ Lo(2)+ L1(12)= Ly(12) + L4(12).
18
(18 In the first two terms of Eq(19) the dynamics of only two
we write Eq.(17) in the time domain as particles appears, whereas the last term involves the interac-
tion of three particles and is proportional to the square of the
#P(q,t) = i ﬂ eiqxl(eilet_eigo(lz)t)((N_l) de_nsity. It is shovx'/n' in Appendix B that for a hard-sphere
P5 \ dxq fluid for the recollision process the three-particle terms do

contribute to the binary collision dynamics. It can be seen
xau(rlz) eiva_(N—1) T2 ( 12) —|qx2) from Eg. (19) that due to the operation of,, there will

X4 appear some terms containing the force in the f&m+pt/
m|) that are divergent due to the free-particle dynamics.
+| giaxi(e Lot — g~ 1£0It (N—1)(N—2) However, sugh tgrms exactly canpel with the same divergent
terms appearing i §(q,t). Following the procedure of av-
U(r ) eraging as described in R¢8], we finally obtain an expres-
w2y e—qu2H> (19) sion for ¢-(q,t) by collecting the terms that involve only
29 binary collisions

g(r){e!YAXVIB[p (1) ]+ e VAXVIB - p,(1)]

2
¢'-(q,t)=Q§(3—6a2+a4)ea2/2+n—(i()jfdr dp G L
Po V2

—e” |qpxt/2mB [p ] elq[x+(pxt/2m)]B [ px]}+ f j dr dp G(\f—) (r)eiqxleO[px](efiqx(t)lz
ag(r)
_ algx(t)/2 _ |qx/2 |qx(t)/2+ igx(t)/2
PR Lr (1] Bps f f dr dp G(W) I ALP«(1)]e” AL—Px(t)]e
. . ni p\ dg(r) . .
_ (—ig/2)[x+ (pyt/m)] _ _ (1/2)[x+ (pyt/m)] _O ) 22N 7 Aigxi2p o—igx(t)/2
Aol pxle Aol —pyle T P2 f f drdp G | Tax e (e
—eURF [r(1)]. (20
|
In this equation we have introduced the notations In Eq. (20) the position and momentum vectar&) and
p(t) of the particle moving in a central potential are deter-
Qo=qug, a=QQqt, mined from the equation of motion
lh=1n(q,t)= | dP G(v2P)Pje~(aPx/mt. (21 Ldp,_mdx_ (r=- o) (25
n— n(qi)_ ( ) xe ’ ( ) 2 dt_2dt2_ X - IX
ALPL(1)]=2PE(D) ot py(t)] 1+ 15 (220 In the next section we derive an expression for the longitu-
dinal viscosity in terms of the long-wavelength limit of Eq.
and (20).
BLP«(1)]=15PZP5(1) 1o+ 2[PuPZ(t) + PEpy(t) 11 IV. LONGITUDINAL VISCOSITY
+ %[px+ px(t)+4pxpx(t)]l2 The expression for the longitudinal viscosity is [2]
FpxtPx(D) I3+ 14. (23 4 1 oc
m=mng+t § Us:m f [Jxx(t)_<Jxx(t)>](Jxx_<‘Jxx>)-
A, and B, are the values of A and B with B! JO
px(t) pP,(0)=py. g(r) is the static correlation function (26)
and
where
G(P)=(1/27P2)%? exp(— P?/2P}) (24)

Jap(t) = E [Mo(Dvig() +Ti(DFig1] (27

is the Maxwellian momentum distribution.
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and
dpP —
<Jaﬁ) 5aﬁV P+V|— JE (E-E)|, (28)
with
2mn &U( )
PV= kBT—T d —r3g(r), (299
pf 1
E:}i) >mt s “U(lri—nD, (29b)
and
3 n
:E BT+§fdr u(r)g(r). (299

In Eqg. (27) r,;,(t) andF;,(t) are theath component of po-
sition and force on théth particle at any time. Expression

(28) for (J,p is suitable[7] for the canonical ensemble av-

eraging that is used in the present work. Rewrltmg )

and noting thai(Jxx(t)JXX(O» is given by Imhﬁoda (g,t)/
g2 we obtain an expression for the longitudinal viscosity

"1
ﬂl_ﬂnmzf ( ( ) +<<‘]xx><Jxx(t)>>
q—0 q
_<\]xx(t)<‘]xx>>_<Jxx<‘]xx(t)>>) dt (30)
~pn [ s @
0

In Eq. (31) S(t) is m? times the integrand of Eq30). The

1553

3kgT n
m  m’P;

L
$-(t)=lim ¢ ;‘2"” =

q—0

xffdr dpG( Io)g(r)
+mLP§ffdr dpe(%

X g(r)[(P21o/4) +1,]x(1)F,[r(t)]

Q [pxpx(t) px]

I 204\ .2
+§[px(t) px]

—_—

e [ [arape| 2) 20
mgBPy \Q X
| ni
20y n27 .0 0
XX =P) 7+ 5502

><ffdrdpG£
v2

ag(r)
X

X

X X(OFr(t)]. (36)

This expression contains effects of uncorrelated binary col-
lisions only. The derivative af(r) appears in some terms so
the density dependence is more complicated than the explicit
linear dependence. In E@36), the first integral represents
the purely kinetic term corresponding to the transport of mo-
mentum via the displacement of particles, the second and the
third integrals are the kinetic-potenti@ross terms, and the
last term is due to the potential term arising from the action
of interparticle forces. Equatiof86) att=0 reduces to

3kB

$-(0)= += f dr g(r)x Fy(r)

expressions for the bulk and shear viscosities are similar to

Eqg. (26) and are given, respectively, as

UB:ﬁnfO Sg(t)dt,

sB<t>=a2ﬁ<[Jaa—<Jw(t>>](JBﬁ—<Jﬁﬁ>>> (32)
and

p=Bn | AT0d 4T0=(0,(03,(0). (33
Since =3 95+ 75, from Egs.(31)—(33) we find that

S(t)=354T(t)+Sg(t). (39)

Using the above relation, we note that

<Jxx(t)~]yy(0)> = <Jxx(t)Jxx(0)> - 2<ny(t)‘]xy(0)>'
(35

The expression for lig.o¢"(q,t)/q” appearing in Eq.
(30) can be obtained from E¢20) and is

J
J g( XE(D. (3D

This expression is the second sum rule of the longitudinal
current correlation function in the long-wavelength limit.
The kinetic contribution tdJ,,(t)) is given by

P.()

J

Using this equation, we can write the second term of(B@)
as

{3l D) (I 0))) = 22<p. Hpj(0)).  (39)

The ensemble average involves terms suct(pqé(t)pp()
and(p,x(t)pj{) The former term can be related to the ki-
netic part of"(t) and the latter to the kinetic parts ¢t (t)
and¢'(t) (i.e., the transverse stress correlation funoti@y
using Eq.(35) we finally obtain

<<Jxx(t)><‘]xx(0)>> [¢kk(t) (39)

SordD].
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Similarly, the other two terms in Eq30) for the noninter-  where 5 and ¢i5 are the terms corresponding to the two

acting part are (kinetic-potential cross terms. Now collecting terms that are
. i T independent of density and proportional to the first power of
I D {(Ixx(0))) = (Iux(0)(Iux() = [ Prci(1) = 5 DD ] the density, corresponding to the kinetic-kinetic and the

(40) kinetic-potential contributions, respectively, we recover Eq.

In the above equation L (t) and¢ [ (t) are the kinetic parts (42) and also obtain

of the long-wavelength limit of the MF of the longitudinal
and transverse current correlation functions. Using E28).
and(40) in Eqg. (30) and taking into account only the kinetic-
kinetic contribution, we obtain

nP=%nsP. (48)

This implies that the kinetic-kinetic and kinetic-potential
contributions to bulk viscosities are zero. Similarly, we col-
Se(1) = (V) + [ ph(t) — 2 ()] = 2[ ph(t) — 2 Ph(t)] lect the terms corresponding to the potential-potential contri-
bution to viscosity, i.e., terms proportional to the square of
=5 dndt). (41)  the density and obtain

This |mplles thaf[ thg 4k|r_1et|<: part (_)f th_e longitudinal stress shP(t)= ¢bp(t)+ Vz[d’kk(t)_ %¢-I[k(t)]_ v[<f>k§(t)+ ¢k;l>(t)
correlation function is; times the kinetic part of the trans-
verse stress correlation function. In terms of viscosities we — D], (49)
obtain
4 Kk This expression dogs n_ot express'thg potential-potential con-
7 =37s (42)  tribution to the longitudinal viscosity in terms of the contri-

] ) . ) bution to shear viscosity alone as is done by @Q). This is

and the relation among three viscosities provides that thgecayse the contribution to the bulk viscosity is mainly due

kinetic contribution to the bulk viscosityy is zero. In the {5 the potential-potential part of stress. In order to determine
next section we evaluate the longitudinal and bulk viscositieg,e potential contribution to longitudinal viscosity we need

for a system intgracting vi:_;l thg hard-sphere potential withing eyaluate various contributions due &, ¢>ké and ¢k§
the binary collision approximation. for the hard-sphere interaction.

Consider the kinetic-kinetic part of E¢36)
V. HARD-SPHERE LIMIT

In order to calculate the longitudinal viscosity;, we L, _3keT 1 ff P lo. 5,
have to calculate the various terms in E80). The expres- i 2 drdp G V3 9(n)| g LPxPx(t)

m m?p
sion for the first term given by Eq30) can be evaluated by °
using the well-known hard-sphere dynamics, whereas the 12
last three terms can be simplified for the hard-sphere poten- P+ 5 P |- (50
tial in a manner given below. Using

p(t) The time dependence of E(pO) is determined by writing
|
(I 0)=2 5 (1+w), (43)
! du(t)
r(t) = Pr(0)| 1+ at t+e-- . (52)
where t=0
v=>3mnag(0), The next- and higher-order terms in E@1) involve the

correlated binary collisions. Ignoring these, we approximate

and considering the second term of E§30), i.e., b (t) to decay as

{I{Ix(1))), we write it by using Eq(43) as
1 drk(t) = P 0)exp( —t/ 7g),
(eI = 2 (PEDIP(0)) g (1402 (44)

b where

Using Eq.(35) we express Eq44) as

T,lzdﬁf’kk(t)
(I D) ON= (14 )X Pl — S i) (45 R dt

Similarly, the other two terms of Eq30) can be written as

Gxx(D(I)= 1+ 1) [ (P — E o) + (Dhk— 5 D]
(46)

/ d(0). (52
t=0

7! contains two contributions. The evaluation of the first
contribution is discussed in Appendix A &0, which pro-
vides a contribution to the viscosity, given as

L NmeR(0)  15(kgTm)'?
k™ <d¢>kk(t))  16ymg(0)o?
t

and

Gl D D)= (1+ v)z{[¢k§—%¢Ip<t)]+<¢kk—;—‘¢lk)(},7)
4

(53

at |,
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Similarly, the second contribution af;* can also be evalu-
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The first term in Eq(61) is nonzero only whem>g, so we

ated as explained in Appendix A. Its contribution to the lon-neglect it; thes function in the second term yields=0 and

gitudinal viscosity is given as

7]L2: 3(kBTm)1/2
<8\ mg(o)o?

The total kinetic contribution arising due @ (t) in Eq. (30)
is then

(54

21(kgTm)?
16\mg(0)o?

Here it may be noted thay" is the contribution to the lon-
gitudinal viscosityz, due to¢"(t) alone. Now we consider
the kinetic-potentialcross contribution tog"(q,t). The bi-
nary collision expression fop(t) is given by the second
integral of Eq.(36) and is rewritten as

L1 L2__

M= Thie + Mk = (59

n p
sa0= iz | [ arop G(%)g(r)[(paom)""z]

XX(OFLr(t)]. (56)

hencex(t) =x(0). Performing the integration in E§60), we
obtain

dpn(t) = E\mnatveg(o) 8(1).

The last term in Eq(19) appears to be proportional tw;
however, it can contribute to the longitudinal viscosity in the
binary collision approximation if the collisions that are un-
correlated are separated out. It is noted that the last term of
Eq. (19) is the only such term that provides a contribution to
longitudinal viscosity of orden?. The evaluation of this term

is given in Appendix B. The result obtained there is

(62)

n
$pa() =g o Vmg(0)vod(t), (63
The total contribution to the longitudinal viscosity due to
G pp(t) and ¢ p3(t) is

36

Top=5 - 70v°9(0). (64)

The two terms in this equation can be evaluated in a mannd¢sing the Green-Kubo relation for EG49) and substituting
similar to that used for the kinetic-kinetic term in Appendix the various contributions from Eq¢s5), (59), and(64), we

A. Thus obtain an expression for the potential-potential contribution
to longitudinal viscosity
bip(Dli—o=(B+5)a(a) e vinm=Fwl  (57) 162 »
14 14
The time-dependent part of the second cross term appearing nPP= 0~ T59(0) " (65)
in Eq. (36) is simplified to 5\mg(o)
¢|§S(t)|t=o= vu3. (58)  The last term in this equation appears due to the subtraction

of the invariant term froml,,(t). Using Eqs.(42) and(48)

The corresponding contribution to the viscosity due to bothand our earlier results for the shear viscosity obtained in the

cross terms is obtained as

L L 21v
Mkp=Pp(D]t=07= 70 59(0)’ (59
where

5
T_ 1602 \/;g(()')nvo ,

and

5(kgTm)?
(PSR =
1602\/7

The potential-potential part of E¢36) is written as

[ [ arapo

d
x% )r—( X X(F,[r(1)].

nly
2P}

bpp()= v

(60)
Writing g(r)=—y(r)exd —BU(r)], wherey(r) is a con-

tinuous function even when both(r) and U(r) have dis-
continuities, we obtain

g'(n=y'(rexg—BU(r)]+g(r)é(r—a*). (61

binary collision method, we obtain an expression for longi-
tudinal viscosity

o (416 36, 4
—g(o_)(§+1—51/+§1) — vV

71 (66)

The expression for shear viscosity obtained in our other work
[4]is

_ 770
77 9(0)

Using the relation among three viscosities, we obtain

1+=v+—v

5 5 67

4 12 2)

me=ag 10,2
B Bg(o_) ’

whereag=[4/7—1:]=1.0066. The numerical factag pre-
dicted by Enskog is 1.0186. Thus it is gratifying to see that
our method provides the value of a bulk viscosity in close
agreement with the Enskog result.

VI. CONCLUSION

We have obtained an expression for the binary collision
contributions to the first-order memory function of the lon-
gitudinal current correlation function using the cluster expan-
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sion technique. This expression involves the static pair cor-
relation function and the time dependence of the position,
momentum, and acceleration of a particle. The numerical
calculations for the continuous interaction potential are fea-
sible due to the appearance of the position and momentum of XG
a particle moving in a central potential. Thus the present
formalism provides a methodology to obtain longitudinal and
bulk stress autocorrelation functions in the binary collision
approximation for a system of particles of the fluid interact- ) o ) )
ing via a continuous potential. In the limit of hard sphereshe angular integration in this equation can be done by using
our results for the longitudinal and bulk viscosities are foundthe addition theorem, and noting thiat o lies on the bound-

deie(t)
dt

_ nIOJ'jdd
T amez ) ) 4P

t=

P 3 X 2 2
2 Jarps T prut? 2

Xo(~i-p) = |ulst-0).  (AB)

to be in agreement with the Enskog results. ary we have
dii(t) nlo
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APPENDIX A fzw 2 1 5
X si d f 0(—un)d
The first term in the time derivative of E¢50) 0 ¢ dé o 6= ) du
depia(t) | (A9
kk{l) —nlg p 2 .
dt - 4m2PS J J dr dp G(‘/j)g(r)pxpx(t)px(t) :—%Sng(G')O'ZUS\/;. (AlO)
(A1)
The dynamics of the collision between two hard spheres pro- APPENDIX B

vides an expression for the time evolution of momentum

dp,(t)/dt=6(0?—b?) 6(—F-P) 8(t—7)(— pxt P5),

(A2)
wherep} is the postcollision momentum
. . X
Px=Px—2(p-7) - (A3)
with collision time
m N
== 5 [rpt+(o?-bH7, (Ad)

b?=r?—(r-p) andf(x) =1 if x>0 andf(x) =0 if x<0. By
substituting the value op,(t) from Eq. (A2), Eq. (A1) re-
duces at=0 to

déiic(t) nlo p
dt |,_,  2m?P3 fjdr dp G| L5/90)

3/ 7 f 2_Wh2\g(_F. 5 _
Xpy(p-1) - 8(a°=b5) 6(—1-p)5(— 7).
(A5)
Using the value ofr from Eq. (A4), we note that

5(—7')=5<g{r,LL+[02—r2+(r2M2)]l/2} . (AB)

where u is the cosine of the angle betweenand p. By
noting that the aboves function has poles at?=¢?, we
obtain

o~ 7)= 2 |ul 81— o). (A7)

Using Eq.(A7) in Eg. (A5) we obtain

When combined withe¢ §(q,t) the last term in Eq(19)
provides a contribution t@(q,t) that is proportional to the
square of density and is given as

1 . . ,
=2 <% e'qxle'£23‘((N—1)(N—2) U2 e'qXZ)D.
0 1

Xy
(BY)
Equation(B1) can also be written as
1 dupp, duqz dUga||
— _ty 2 — — aqxg
PS< 9%y * 9%, +(N=3) axq )| €
. au(r _
Xe'ﬁzst( (N—1)(N—2) (_23) equz) D
Xy
(B2

The first two terms in Eq(B2) give rise to a three-body
contribution, whereas the last term gives rise to a four-body
contribution that can be eliminated by using the exact rela-
tion between the derivative of g5(rq,ryrg) and
04(rq1,r2.r3.r4) [8]. After performing the necessary ensemble
average we finally obtain

—anl"JJJd dr’dp’
r ar
BPg P

p/

V2

ags(r,r’)

P e—iq(x—x /2)e(—iq/2)x (t)FX[r’(t)].

X G

(B3)

This term involves the simultaneous interaction of three ar-
bitrary particles, say, 1, 2, and 3. However, if we consider
only the recollision terms in which, say, particle 3 recollides
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with particle 1, then the number of terms in E@®1) is

reduced byN—1. Under the weak-coupling approximation
the recollision terms can contribute to the binary collision

1557

n?l
L2 _ 0 ’ ’
Pop(t)= 2BPZ(N—1) J J f dr dr’dp

contribution. For example, in the second term of Hg2) ' X

there is no direct interaction between particles 1 and 2, XG| —|g(r) =g(r")é(r—o)d(t—17)
whereas particles 2 and 3 are interacting directly. This im- V2 r

plies that collisions between particles 1 and 2 and patrticles 2 X!

and 3 are independent provided thatr;—r, andr’'=r,—r5
satisfy the condition that angles betweeandr’ be greater

X 0(0?—b?) 6~ ) (~2pR) 7

thanz/2. In view of the above discussion we approximate X' x'(t) 2
X|x——=+——| 0(—r-1").
ags(r,r’)y ag(r) , , 2 2 ( )
(N-1) = —=—"=g(r)e(-r-r'), (B4
r =0 yields =0 and reduces to
where 6(—r,f') ensures that particles 1 and 2 remain at a n2l,

distance where these can be considered as uncorrelated. By ¢ (t)

substituting Eq(B4) into Eq. (B3) we obtain

[ o] )1

X 0( _ F7’r‘r)efiq(xfx’/Z)e(7i(:]/2))<’('[)|:X|:r /(t)]

a(r’)

(B5)

g ) | [or o

p’| xx’
X G E rr_’x 29(r)g(r")8(r— o) 8(t)

X 0(c®—b?) 6(— u)pub(—t-1').

Integration in Eq(B7) can be carried out by expanding the

(B7)

In the long-wavelength limit it gives a contribution to the fynction in the Legender polynomial. This simplifies the in-

potential-potential part of the stress correlation function
2'0
L2

m@ PRI
va| “ox 9 2

XE[r' (H)]0(—F-F').

Using the values of,[r'(t)] and g'(r) from Egs. (25),
(A2), and(61), respectively, we get

ag(r)

(B6)

tegral to
- o 4 [°
b= gm2 5 |,
0
Xf w d,uf dp'p’°G| —
-1

X &(r—o)dr,

COS\ Sin\ d\ 27

5(t)ff g(r)

(B8)

where) is the angle between andr’. Evaluating the inte-
grals in Eq.(B8) we finally obtain Eq.(63).

[1] J. P. Boon and S. YipMolecular Hydrodynamic¢McGraw-
Hill, New York, 1980.

[2] J. P. Hansen and I. R. McDonald@heory of Simple Liquids
2nd ed.(Academic, London, 1986

[3] K. N. Pathak, S. Ranganathan, and R. E. Johnson, Phys. Rev.

E 50, 1135(1994.

[4] Rajneesh K. Sharma, K. Tankeshwar, K. N. Pathak, S. Ranga-

nathan, and R. E. Johns¢anpublished

[5] G. F. Mazenko and S. Yip, iBtatistical Mechanigsedited by
B. J. Berne(Plenum, New York, 1977

[6] R. Zwanzig, Phys. Revi29 486 (1963.

[7] D. A. McQuarrie,Statistical Mechanic¢Harper & Row, New

York, 1976.

[8] N. H. March and M. P. TosiAtomic Dynamics in Liquids
(Macmillan, New York, 1978&



