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Binary collision contribution to the longitudinal current correlation function of dense fluids
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An expression for the binary collision contribution to the first-order space-time memory function of the
longitudinal current correlation function has been obtained by using the cluster expansion technique for a fluid
whose particles are interacting through a continuous potential. This expression involves the radial distribution
function and time dependence of the position, momentum, and acceleration vectors of the particles. The
long-wavelength limit of the expression is obtained for use in studying the longitudinal and bulk viscosities of
fluid. It is found that for the hard-sphere case, our method provides expressions for the longitudinal and bulk
viscosities that agree with Enskog results.@S1063-651X~97!06601-4#

PACS number~s!: 51.10.1y, 61.20.Ne, 66.20.1d, 51.20.1d
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I. INTRODUCTION

Considerable progress has been made during past
decades in extending our knowledge of atomic dynamic
wavelengths and frequencies of molecular scale in de
gases and liquids@1,2#. The density space-time correlatio
function provides information about the temporal structu
factor and viscous processes in fluids. The longitudinal v
cosity associated with the time correlation function of de
sity is 4

3 times the shear viscosity plus the bulk viscosity.
the past, the shear viscosity of the dense fluids has rece
much more attention than the bulk viscosity; this may ha
been due to complications involved in determining the ac
rate value of the bulk viscosity experimentally. Theore
cally, one approach to the space-time correlation funct
has been through the evaluation of its memory funct
~MF!. Recently, we have calculated expressions for the
nary collision contribution to the MF of the self-density co
relation function@3# and the transverse current correlati
function @4#. When applied to hard-sphere fluids, our expr
sions provide results for the self-diffusion and the shear
cosity in agreement with the Enskog results@5#. In the
present work we derive an expression for the binary collis
contribution to the longitudinal current correlation functio
that is calculable for a continuous potential. The lon
wavelength limit of this expression may be used to study
longitudinal viscosity of the fluid. When applied for a syste
interacting via a hard-sphere potential, our expressions
the longitudinal and bulk viscosities are found to be in agr
ment with the Enskog value.

The layout of the paper is as follows. In Sec. II the ba
formalism and exact relations are given. An expression
the binary collision contribution to the MF of the longitud
nal current correlation function is obtained in Sec. III. A
expression for the longitudinal viscosity in terms of the lon
wavelength limit of the expression obtained in Sec. III
given in Sec. IV. Section IV also contains various exact
lation between various viscosities. In Sec. V the express
for the longitudinal and bulk viscosities are evaluated
551063-651X/97/55~2!/1550~8!/$10.00
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particles interacting via a hard-sphere potential. The wor
concluded in Sec. VI.

II. BASIC FORMALISM

The longitudinal current correlation function is defined

C~q,t !5^ j xx* ~q,t ! j xx~q,0!&, ~1!

where the dynamical variable is

j xx~q,t !5(
i51

N

v ix~ t !e
iqxi ~ t !, ~2!

with the wave vectorq taken along thex axis. The angular
brackets in Eq.~1! represent the ensemble average;v ix(t)
andxi(t) are thex component of the velocity and the pos
tion of thei th particle at any timet. The time dependence o
any dynamical variableA(q,t) is determined by the equatio
of motion

]A~q,t !

]t
5 iLA~q,t !, ~3!

whereL is the Liouville operator and is defined as

L5L01(
j,k
L1~ j ,k!

52 i(
j

Pj
m

]

]r j
2 i(

j,k
FjkS ]

]Pj
2

]

]Pk
D ; ~4!

Fjk52]U(r jk)/]r j is the force andr jk5ur j2r ku. We define
the Fourier-Laplace transform ofC(q,t) as

C̃~q,z!5 i E
0

`

dt eiztC~q,t !,

5 K j xx~q,0!U 1

L2zU j xx~q,0!L ~5!

for Imz.0.
1550 © 1997 The American Physical Society
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55 1551BINARY COLLISION CONTRIBUTION TO THE . . .
The dynamical structure factorS(q,v) is related toC(q,v)
by

S~q,v!5
q2

v2 C~q,v!. ~6!

The time evolution ofC(q,t) can be determined by usin
Mori’s equation of motion, which inz space is

C̃~q,z!52
v0
2

z1K̃~q,z!
, ~7!

whereK̃(q,z) is the first-order memory function of the lon
gitudinal current correlation function and is defined as

K̃~q,z!5
1

Nv0
2 KQLj xx~q,0!U 1

QLQ2zUQLj xx~q,0!L .
~8!

In Eq. ~8! Q512P is a projection operator orthogonal t
P5 v̄ 0

2u j xx(q,0)&^ j xx(q,0)u andv 0
25kBT/m is the square of

the thermal speed.
The memory functionK̃(q,z) can be expressed in term

of a conventional correlation function whose time evoluti
is governed by the original Liouville operator rather than t
projected oneQLQ appearing in Eq.~8!. By twice applying
the identity

z

L2z
5211

L
L2z

~9!

to Eq. ~5! we obtain

z2C̃~q,z!5v0
2@2z1f̃L~q,z!#, ~10!

where

f̃L~q,z!5
1

Nv0
2 KLj xx~q,0!U 1

L2zULj xx~q,0!L ~11!

is the Fourier-Laplace transform of the time correlation fun
tion fL(q,t). From Eqs.~7! and ~10! we get

K̃~q,z!5
zf̃L~q,z!

z2f̃L~q,z!
. ~12!

Thus the MF and hence the longitudinal current correlat
function can be obtained from the knowledge offL(q,t)
only. In the next section we evaluatefL(q,t) in the binary
collision approximation.

III. BINARY COLLISION CONTRIBUTION

The binary collision contribution tofL(q,t) can be ob-
tained microscopically by using the cluster expansion te
nique @6#. This involves the cluster expansion of the res
vent operator~L2z!21, which appears in the definition o
any time correlation function. The binary collision expansi
formula is
-

n

-
-

1

L2z
5

1

L02z
1 (

j,k
S 1

L01L1~ j ,k!2z
2

1

L02zD1••• .

~13!

In this equation the first term involves free propagation a
the second term contains a sum over a pair of particles (j ,k)
only. The third term involves three particles and so on. T
equation has already been used in deriving the low-den
formula for the phase-space MF and the first-order spa
time MF.

For the dynamical variablej xx(t) we have

iLj xx5
d jxx
dt

5(
i

~ v̇ ixe
iqxi1 iqv ix

2 eiqxi !, ~14!

wherev̇ ix5(21/m)]U(r )/]xi is thex component of the ac-
celeration of particlei . Substituting Eq.~14! into Eq. ~11!,
we obtain

f̃L~q,z!5
1

v0
2 (

i
(
j

K S 2
1

m

]U~r !

]xi
1 iqv ix

2 D
3eiqxiU 1

L2zUS 2
1

m

]U~r !

]xj
1 iqv jx

2 Deiqxj L .
~15!

Using the binary collision expansion formula~13!, the lon-
gitudinal current correlation functionfL(q,t) can be written
as sum of two terms, i.e.,

fL~q,t !5f0
L~q,t !1f1

L~q,t !, ~16!

where f 0
L(q,t) and f 1

L(q,t) are the contributions corre
sponding to the first and second terms of Eq.~13! in the time
domain. Since Eq.~14! is the sum of the kinetic and potentia
contributions, Eq.~15! can be written as a sum of four term
One is a kinetic-kinetic term, two are kinetic-potenti
~cross! terms, and the fourth is a potential-potential ter
Evaluation of the first two contributions is simple; therefor
we illustrate here the evaluation of the potential-poten
term only. This term will be the sum of two termsf 0

p(q,t)
andf 1

p(q,t) corresponding to the first two terms in Eq.~13!,
respectively. Procedures for evaluation off 0

p(q,t) and
f 1

p(q,t) are quite similar; therefore, we illustrate here on
the termf 1

p(q,t). Writing the total potential as a sum of pa
potentials and using Eq.~13! in Eq. ~15!, we obtain the
potential-potential contribution

f̃1
p~q,z!5

1

m2v0
2 K ]U

]x1
eiqx1(

l,k
S 1

L02L1~ l ,k!2z
2

1

L02zD
3S (

jÞ1

]u~r 1 j !

]x1
eiqx1

1~N21!(
jÞ2

]u~r 2 j !

]x2
eiqx2D L . ~17!

The sum overj in the last term can be simplified by notin
that all terms except forj51 are equivalent. Noting
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(
jÞ2

]u~r 2 j !

]x2
eiqx25

]u~r 21!

]x2
eiqx21~N22!

]u~r 23!

]x2
eiqx2,

~18!

we write Eq.~17! in the time domain as

f1
p~q,t !5

1

P0
2 K ]U

]x1
H eiqx1~e2 iL12t2e2 iL0~12!t!S ~N21!

3
]u~r 12!

]x1
e2 iqx12~N21!

]u~r 12!

]x1
e2 iqx2D

1Feiqx1~e2 iL23t2e2 iL0~23!t!~N21!~N22!

3
]u~r 23!

]x2
e2 iqx2G J L , ~19!
where

L125L0~1!1L0~2!1L1~12!5L0~12!1L1~12!.

In the first two terms of Eq.~19! the dynamics of only two
particles appears, whereas the last term involves the inte
tion of three particles and is proportional to the square of
density. It is shown in Appendix B that for a hard-sphe
fluid for the recollision process the three-particle terms
contribute to the binary collision dynamics. It can be se
from Eq. ~19! that due to the operation ofL0, there will
appear some terms containing the force in the formF~ur1pt/
mu! that are divergent due to the free-particle dynami
However, such terms exactly cancel with the same diverg
terms appearing inf 0

p(q,t). Following the procedure of av
eraging as described in Ref.@3#, we finally obtain an expres
sion for fL(q,t) by collecting the terms that involve onl
binary collisions
fL~q,t !5V0
2~326a21a4!e2a2/21

nV0
2

P0
4 E E dr dp GH p

&
J g~r !$e~ iq/2!@x2x~ t !#B@px~ t !#1e~ iq/2!@x1x~ t !#B@2px~ t !#

2e2 iqpxt/2mB0@px#2eiq@x1~pxt/2m!#B0@2px#%1
inV0

P0
3 E E dr dp GS p

&
D g~r !eiqx/2A0@px#~e

2 iqx~ t !/2

2eiqx~ t !/2!Fx@r ~ t !#2
inV0

bP0
3 E E dr dp GS p

&
D ]g~r !

]x
eiqx/2$A@px~ t !#e

2 iqx~ t !/21A@2px~ t !#e
iqx~ t !/2

2A0@px#e
~2 iq/2!@x1~pxt/m!#2A0@2px#e

~ iq/2!@x1~pxt/m!#%1
nI0
bP0

2 E E dr dp GS p

&
D ]g~r !

]x
eiqx/2~e2 iqx~ t !/2

2eiqx~ t !/2!Fx@r ~ t !#. ~20!
r-

itu-
.

In this equation we have introduced the notations

V05qv0 , a5V0t,

I n[I n~q,t !5E dP G~&P!Px
ne2~ iqPx /m!t; ~21!

A@px~ t !#5 1
4px

2~ t !I 01px~ t !I 11I 2 ; ~22!

and

B@px~ t !#5 1
16px

2px
2~ t !I 01

1
4 @pxpx

2~ t !1px
2px~ t !#I 1

1 1
4 @px

21px
2~ t !14pxpx~ t !#I 2

1@px1px~ t !#I 31I 4 . ~23!

A0 and B0 are the values of A and B with
px(t)5px(0)5px . g(r ) is the static correlation function
and

G~P!5~1/2pP0
2!3/2 exp~2P2/2P0

2! ~24!

is the Maxwellian momentum distribution.
In Eq. ~20! the position and momentum vectorsr (t) and
p(t) of the particle moving in a central potential are dete
mined from the equation of motion

1

2

dpx
dt

5
m

2

d2x

dt2
5Fx~r !52

]U~r !

]x
. ~25!

In the next section we derive an expression for the long
dinal viscosity in terms of the long-wavelength limit of Eq
~20!.

IV. LONGITUDINAL VISCOSITY

The expression for the longitudinal viscosityh1 is @2#

h l5hB1
4

3
hS5

1

VkBT
E
0

`

@Jxx~ t !2^Jxx~ t !&#~Jxx2^Jxx&!,

~26!

where

Jab~ t !5
1

N (
i

@mv ia~ t !v ib~ t !1r ia~ t !Fib~ t !# ~27!
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and

^Jab&5dabVFP1VS dPdED ~E2Ē!G , ~28!

with

PV5kBT2
2pn

3 E
0

`

dr
]U~r !

]r
r 3g~r !, ~29a!

E5(
i

pi
2

2m
1
1

2 ( 8
i , j

U~ ur i2r j u!, ~29b!

and

Ē5
3

2
kBT1

n

2 E dr U~r !g~r !. ~29c!

In Eq. ~27! r ia(t) andFia(t) are theath component of po-
sition and force on thei th particle at any timet. Expression
~28! for ^Jab& is suitable@7# for the canonical ensemble av
eraging that is used in the present work. Rewriting Eq.~26!
and noting that̂ Jxx(t)Jxx(0)& is given by limq→0f

L(q,t)/
q2, we obtain an expression for the longitudinal viscosity

h15bnm2E
0

`S lim
q→0

fL~q,t !

q2
1Š^Jxx&^Jxx~ t !&‹

2ŠJxx~ t !^Jxx&‹2ŠJxx^Jxx~ t !&‹D dt ~30!

5bnE
0

`

Sl~ t !dt. ~31!

In Eq. ~31! Sl(t) is m
2 times the integrand of Eq.~30!. The

expressions for the bulk and shear viscosities are simila
Eq. ~26! and are given, respectively, as

hB5bnE
0

`

SB~ t !dt,

SB~ t !5(
a,b

Š@Jaa2^Jaa~ t !&#~Jbb2^Jbb&!‹ ~32!

and

hS5bnE
0

`

fT~ t !dt, fT~ t !5^Jxy~ t !Jxy~0!&. ~33!

Sinceh l5
4
3hs1hB , from Eqs.~31!–~33! we find that

Sl~ t !5 4
3fT~ t !1SB~ t !. ~34!

Using the above relation, we note that

^Jxx~ t !Jyy~0!&5^Jxx~ t !Jxx~0!&22^Jxy~ t !Jxy~0!&.
~35!

The expression for limq→0f
L(q,t)/q2 appearing in Eq.

~30! can be obtained from Eq.~20! and is
to

fL~ t !5 lim
q→0

fL~q,t !

q2
5
3kBT

m
1

n

m2P0
2

3E E dr dp GS p

&
D g~r !S I 08 @px

2px
2~ t !2px

4#

1
I 2
2

@px
2~ t !2px

2# D 1
n

mP0
2 E E dr dp GS p

&
D

3g~r !@~px
2I 0/4!1I 2#x~ t !Fx@r ~ t !#

1
n

mbP0
2 E E dr dp GS p

&
D ]g~r !

]x

3x@px
2~ t !2px

2#
I 0
4

1
nI0
2bP0

2

3E E dr dp GS p

&
D

3
]g~r !

]x
x x~ t !Fx@r ~ t !#. ~36!

This expression contains effects of uncorrelated binary c
lisions only. The derivative ofg(r ) appears in some terms s
the density dependence is more complicated than the exp
linear dependence. In Eq.~36!, the first integral represent
the purely kinetic term corresponding to the transport of m
mentum via the displacement of particles, the second and
third integrals are the kinetic-potential~cross! terms, and the
last term is due to the potential term arising from the act
of interparticle forces. Equation~36! at t50 reduces to

fL~0!5
3kBT

m
1

n

m E dr g~r !x Fx~r !

1
n

2m E dr
]g~r !

]x
x2Fx~r !. ~37!

This expression is the second sum rule of the longitudi
current correlation function in the long-wavelength limit.

The kinetic contribution tôJxx(t)& is given by

^Jxx~ t !&5(
i

pi
2~ t !

3m
.

Using this equation, we can write the second term of Eq.~30!
as

Š^Jxx~ t !&^Jxx~0!&‹5
1

9m2 (
i , j

^pi
2~ t !pj

2~0!&. ~38!

The ensemble average involves terms such as^p ix
2 (t)p jx

2 &
and ^p ix

2 (t)p jy
2 &. The former term can be related to the k

netic part offL(t) and the latter to the kinetic parts offL(t)
andfT(t) ~i.e., the transverse stress correlation function!. By
using Eq.~35! we finally obtain

Š^Jxx~ t !&^Jxx~0!&‹5@fkk
L ~ t !2 4

3fkk
T ~ t !#. ~39!
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Similarly, the other two terms in Eq.~30! for the noninter-
acting part are

ŠJxx~ t !^Jxx~0!&‹5ŠJxx~0!^Jxx~ t !&‹5@fkk
L ~ t !2 4

3fkk
T ~ t !#.

~40!

In the above equationf kk
L (t) andf kk

T (t) are the kinetic parts
of the long-wavelength limit of the MF of the longitudina
and transverse current correlation functions. Using Eqs.~39!
and~40! in Eq. ~30! and taking into account only the kinetic
kinetic contribution, we obtain

Skk
l ~ t !5fkk

L ~ t !1@fkk
L ~ t !2 4

3fkk
T ~ t !#22@fkk

L ~ t !2 4
3fkk

T ~ t !#

5 4
3fkk

T ~ t !. ~41!

This implies that the kinetic part of the longitudinal stre
correlation function is43 times the kinetic part of the trans
verse stress correlation function. In terms of viscosities
obtain

h l
kk5 4

3hS
kk ~42!

and the relation among three viscosities provides that
kinetic contribution to the bulk viscosityhB is zero. In the
next section we evaluate the longitudinal and bulk viscosi
for a system interacting via the hard-sphere potential wit
the binary collision approximation.

V. HARD-SPHERE LIMIT

In order to calculate the longitudinal viscosityh l , we
have to calculate the various terms in Eq.~30!. The expres-
sion for the first term given by Eq.~30! can be evaluated by
using the well-known hard-sphere dynamics, whereas
last three terms can be simplified for the hard-sphere po
tial in a manner given below. Using

^Jxx~ t !&5(
i

pi
2~ t !

3m
~11n!, ~43!

where

n5 2
3pns3g~s!,

and considering the second term of Eq.~30!, i.e.,
Š^Jxx&^Jxx(t)&‹, we write it by using Eq.~43! as

Š^Jxx&^Jxx~ t !&‹5(
i , j

^pi
2~ t !pj

2~0!&
1

9m2 ~11n!2. ~44!

Using Eq.~35! we express Eq.~44! as

Š^Jxx~ t !&^Jxx~0!&‹5~11n!2~fkk
L 2 4

3fkk
T !. ~45!

Similarly, the other two terms of Eq.~30! can be written as

ŠJxx~ t !^Jxx&‹5~11n!2@~fkp
L12 4

6fkp
T !1~fkk

L 2 4
3fkk

T !#
~46!

and

ŠJxx^Jxx~ t !&‹5~11n!2$@fkp
L22 4

6fkp
T ~ t !#1~fkk

L 2 4
3fkk

T !%,
~47!
e

e

s
n

e
n-

wheref kp
L1 andf kp

L2 are the terms corresponding to the tw
~kinetic-potential! cross terms. Now collecting terms that a
independent of density and proportional to the first power
the density, corresponding to the kinetic-kinetic and t
kinetic-potential contributions, respectively, we recover E
~42! and also obtain

h l
kp5 4

3hs
kp . ~48!

This implies that the kinetic-kinetic and kinetic-potenti
contributions to bulk viscosities are zero. Similarly, we co
lect the terms corresponding to the potential-potential con
bution to viscosity, i.e., terms proportional to the square
the density and obtain

s1
pp~ t !5fpp

L ~ t !1n2@fkk
L ~ t !2 4

3fkk
T ~ t !#2n@fkp

L2~ t !1fkp
L1~ t !

2 4
3fkp

T ~ t !#. ~49!

This expression does not express the potential-potential
tribution to the longitudinal viscosity in terms of the contr
bution to shear viscosity alone as is done by Eq.~42!. This is
because the contribution to the bulk viscosity is mainly d
to the potential-potential part of stress. In order to determ
the potential contribution to longitudinal viscosity we ne
to evaluate various contributions due tof kk

L , f kp
L1, andf kp

L2

for the hard-sphere interaction.
Consider the kinetic-kinetic part of Eq.~36!

fkk
L ~ t !5

3kBT

m

n

m2p0
2 E E dr dp GS p

&
D g~r !S I 08 @px

2px
2~ t !

2px
4#1

I 2
2
px
2~ t !D . ~50!

The time dependence of Eq.~50! is determined by writing

fkk~ t !5fkk~0!S 11
dfkk~ t !

dt U
t50

t1••• D . ~51!

The next- and higher-order terms in Eq.~51! involve the
correlated binary collisions. Ignoring these, we approxim
fkk(t) to decay as

fkk~ t !5fkk~0!exp~2t/tR!,

where

tR
215

dfkk~ t !

dt U
t50
Y fkk~0!. ~52!

tR
21 contains two contributions. The evaluation of the fir
contribution is discussed in Appendix A att50, which pro-
vides a contribution to the viscosity, given as

hkk
L152

nmfkk
2 ~0!

S dfkk~ t !

dt D
t50

5
15~kBTm!1/2

16Apg~s!s2
. ~53!
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Similarly, the second contribution oftR
21 can also be evalu

ated as explained in Appendix A. Its contribution to the lo
gitudinal viscosity is given as

hkk
L25

3~kBTm!1/2

8Apg~s!s2
. ~54!

The total kinetic contribution arising due tofL(t) in Eq. ~30!
is then

hkk
L 5hkk

L11hkk
L25

21~kBTm!1/2

16Apg~s!s2
. ~55!

Here it may be noted thathL is the contribution to the lon-
gitudinal viscosityh1 due tofL(t) alone. Now we conside
the kinetic-potential~cross! contribution tofL(q,t). The bi-
nary collision expression forf kp

L1(t) is given by the second
integral of Eq.~36! and is rewritten as

fkp
L1~ t !5

n

mP0
2 E E dr dp GS p

&
D g~r !@~px

2I 0/4!1I 2#

3x~ t !Fx@r ~ t !#. ~56!

The two terms in this equation can be evaluated in a man
similar to that used for the kinetic-kinetic term in Append
A. Thus

fkp
L1~ t !u t505~ 22

151 2
3 !g~s!s3v0

2np5 16
5 nv0

2. ~57!

The time-dependent part of the second cross term appea
in Eq. ~36! is simplified to

fkp
L2~ t !u t505nv0

2. ~58!

The corresponding contribution to the viscosity due to b
cross terms is obtained as

hkp
L 5fkp

L ~ t !u t50t5h0

21n

5g~s!
, ~59!

where

t5
5

16s2Apg~s!nv0
,

and

h05
5~kBTm!1/2

16s2Ap
.

The potential-potential part of Eq.~36! is written as

fpp
L1~ t !5

nI0
2bP0

2 E E dr dp GS p

&
D

3
dg~r !

dr

x

r
x x~ t !Fy@r ~ t !#. ~60!

Writing g(r )52y(r )exp@2bU(r )#, where y(r ) is a con-
tinuous function even when bothg(r ) andU(r ) have dis-
continuities, we obtain

g8~r !5y8~r !exp@2bU~r !#1g~r !d~r2s1!. ~61!
-

er

ing

h

The first term in Eq.~61! is nonzero only whenr.s, so we
neglect it; thed function in the second term yieldst50 and
hencex(t)5x(0). Performing the integration in Eq.~60!, we
obtain

fpp
L1~ t !5 4

5Apns4v0g~s!d~ t !. ~62!

The last term in Eq.~19! appears to be proportional ton2;
however, it can contribute to the longitudinal viscosity in t
binary collision approximation if the collisions that are u
correlated are separated out. It is noted that the last term
Eq. ~19! is the only such term that provides a contribution
longitudinal viscosity of ordern2. The evaluation of this term
is given in Appendix B. The result obtained there is

fpp
L2~ t !5

n

5
s4Apg~s!v0d~ t !, ~63!

The total contribution to the longitudinal viscosity due
f pp

L1(t) andf pp
L2(t) is

hpp
L 5

36

5p
h0n

2g~s!. ~64!

Using the Green-Kubo relation for Eq.~49! and substituting
the various contributions from Eqs.~55!, ~59!, and~64!, we
obtain an expression for the potential-potential contribut
to longitudinal viscosity

h l
pp5

36n2

5Apg~s!
h02

4n2

15g~s!
h0 . ~65!

The last term in this equation appears due to the subtrac
of the invariant term fromJxx(t). Using Eqs.~42! and ~48!
and our earlier results for the shear viscosity obtained in
binary collision method, we obtain an expression for lon
tudinal viscosity

h15
h0

g~s! S 431
16

15
n1

36

5p
n22

4

15
n2D . ~66!

The expression for shear viscosity obtained in our other w
@4# is

hs5
h0

g~s! S 11
4

5
n1

12

5p
n2D . ~67!

Using the relation among three viscosities, we obtain

hB5aB
h0

g~s!
n2,

whereaB5@4/p2 4
15#51.0066. The numerical factoraB pre-

dicted by Enskog is 1.0186. Thus it is gratifying to see th
our method provides the value of a bulk viscosity in clo
agreement with the Enskog result.

VI. CONCLUSION

We have obtained an expression for the binary collis
contributions to the first-order memory function of the lo
gitudinal current correlation function using the cluster expa
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sion technique. This expression involves the static pair c
relation function and the time dependence of the positi
momentum, and acceleration of a particle. The numer
calculations for the continuous interaction potential are f
sible due to the appearance of the position and momentu
a particle moving in a central potential. Thus the pres
formalism provides a methodology to obtain longitudinal a
bulk stress autocorrelation functions in the binary collisi
approximation for a system of particles of the fluid intera
ing via a continuous potential. In the limit of hard spher
our results for the longitudinal and bulk viscosities are fou
to be in agreement with the Enskog results.
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APPENDIX A

The first term in the time derivative of Eq.~50!

dfkk
L1~ t !

dt
5

nI0
4m2P0

2 E E dr dp GS p

&
D g~r !px

2px~ t ! ṗx~ t !.

~A1!

The dynamics of the collision between two hard spheres p
vides an expression for the time evolution of momentum

dpx~ t !/dt5u~s22b2!u~2 r̂•p̂!d~ t2t!~2px1px* !,
~A2!

wherepx* is the postcollision momentum

px*5px22~p• r̂ !
x

r
, ~A3!

with collision time

t52
m

p
@r•p̂1~s22b2!1/2#, ~A4!

b25r 22~r•p̂!2, andu(x)51 if x.0 andu(x)50 if x,0. By
substituting the value ofṗx(t) from Eq. ~A2!, Eq. ~A1! re-
duces att50 to

dfkk
L1~ t !

dt
U
t50

52
nI0

2m2P0
2 E E dr dp GS p

&
D g~r !

3px
3~p• r̂ !

x

r
u~s22b2!u~2 r̂•p̂!d~2t!.

~A5!

Using the value oft from Eq. ~A4!, we note that

d~2t!5dSmp $rm1@s22r 21~r 2m2!#1/2% D , ~A6!

wherem is the cosine of the angle betweenr and p. By
noting that the aboved function has poles atr 25s2, we
obtain

d~2t!5
p

m
umud~r2s!. ~A7!

Using Eq.~A7! in Eq. ~A5! we obtain
r-
,
al
-
of
t

-
s
d

o-

dfkk
L1~ t !

dt
U
t50

52
nI0

2m2P0
2 E E dr dp

3GS p

&
D g~r !px

3 x

r
pmu~s22b2!

3u~2 r̂•p̂!
p

m
umud~r2s!. ~A8!

The angular integration in this equation can be done by us
the addition theorem, and noting thatr5s lies on the bound-
ary we have

dfkk
L1~ t !

dt
U
t50

52
nI0

2m3P0
2 s2p g~s!E p7dp

3GS p

&
D E

0

p

du cos3 u sinu

3E
0

2p

sin2f dfE
21

1

m2umuu~2m!dm

~A9!

52 48
5 ng~s!s2v0

3Ap. ~A10!

APPENDIX B

When combined withf 0
p(q,t) the last term in Eq.~19!

provides a contribution tof(q,t) that is proportional to the
square of density and is given as

1

P0
2 K ]U

]x1
Feiqx1e2 iL23tS ~N21!~N22!

]u~r 23!

]x2
e2 iqx2D G L .

~B1!

Equation~B1! can also be written as

1

P0
2 K S ]u12

]x1
1

]u13
]x1

1~N23!
]u14
]x1

D Feiqx1
3e2 iL23tS ~N21!~N22!

]u~r 23!

]x2
e2 iqx2D G L .

~B2!

The first two terms in Eq.~B2! give rise to a three-body
contribution, whereas the last term gives rise to a four-bo
contribution that can be eliminated by using the exact re
tion between the derivative of g3~r1,r2,r3! and
g4~r1,r2,r3,r4! @8#. After performing the necessary ensemb
average we finally obtain

n2I 0
bP0

2 E E E dr dr 8dp8

3GS p8

&
D ]g3~r ,r 8!

]x
e2 iq~x2x8/2!e~2 iq/2!x8~ t !Fx@r 8~ t !#.

~B3!

This term involves the simultaneous interaction of three
bitrary particles, say, 1, 2, and 3. However, if we consid
only the recollision terms in which, say, particle 3 recollid
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with particle 1, then the number of terms in Eq.~B1! is
reduced byN21. Under the weak-coupling approximatio
the recollision terms can contribute to the binary collisi
contribution. For example, in the second term of Eq.~B2!
there is no direct interaction between particles 1 and
whereas particles 2 and 3 are interacting directly. This
plies that collisions between particles 1 and 2 and particle
and 3 are independent provided thatr5r12r2 andr 85r22r3
satisfy the condition that angles betweenr andr 8 be greater
thanp/2. In view of the above discussion we approximat

~N21!
]g3~r ,r 8!

]x
5

]g~r !

]x
g~r 8!u~2r•r 8!, ~B4!

where u~2r̂ ,r̂ 8! ensures that particles 1 and 2 remain a
distance where these can be considered as uncorrelate
substituting Eq.~B4! into Eq. ~B3! we obtain

n2I 0
bP0

2 E E E dr dr 8dp8GS p8

&
D ]g~r !

]x
g~r 8!

3u~2 r̂ , r̂ 8!e2 iq~x2x8/2!e~2 iq/2!x8~ t !Fx@r 8~ t !#. ~B5!

In the long-wavelength limit it gives a contribution to th
potential-potential part of the stress correlation function

fpp
L2~ t !52

n2I 0
2bP0

2~N21!
E E E dr dr 8dp8

3GS p8

&
D ]g~r !

]x
g~r 8!H x2

x8

2
1
x8~ t !

2 J 2

3Fx@r 8~ t !#u~2 r̂• r̂ 8!. ~B6!

Using the values ofFx[ r 8(t)] and g8(r ) from Eqs. ~25!,
~A2!, and~61!, respectively, we get
R

g

,
-
2

a
By

fpp
L2~ t !52

n2I 0
2bP0

2~N21!
E E E dr dr 8dp8

3GS p8

&
D g~r !

x

r
g~r 8!d~r2s!d~ t2t!

3u~s22b2!u~2m!~22pm!
x8

r 8

3S x2
x8

2
1
x8~ t !

2 D 2u~2 r̂• r̂ 8!.

r5s yields t50 and reduces to

fpp
L2~ t !5

n2I 0
bP0

2~N21!
E E E dr dr 8dp8

3GS p8

&
D xx8

rr 8
x2g~r !g~r 8!d~r2s!d~ t !

3u~s22b2!u~2m!pmu~2 r̂• r̂ 8!. ~B7!

Integration in Eq.~B7! can be carried out by expanding theu
function in the Legender polynomial. This simplifies the i
tegral to

fpp
L2~ t !5

nI0
bP0

2

4p

5 E
21

0

cosl sin l dl 2p

3E
21

0

m dmE dp8p83GS p8

&
D d~ t !E r 4g~r !

3d~r2s!dr, ~B8!

wherel is the angle betweenr and r 8. Evaluating the inte-
grals in Eq.~B8! we finally obtain Eq.~63!.
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